Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
2.
Sci Immunol ; 7(68): eabi6112, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213210

RESUMO

Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/imunologia , Interleucina-2/imunologia , Linfócitos/imunologia , Animais , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469774

RESUMO

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Interleucina-2/imunologia , Células de Kupffer/imunologia , Animais , Hepatite B/imunologia , Tolerância Imunológica/imunologia , Camundongos , Camundongos Transgênicos
4.
PLoS Pathog ; 17(5): e1009228, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979382

RESUMO

Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers' protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.


Assuntos
Morte Celular , Antígenos de Superfície da Hepatite B/metabolismo , Hepatite B Crônica/complicações , Hepatócitos/patologia , Interferon-alfa/farmacologia , Falência Hepática Aguda/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/metabolismo , Camundongos , Camundongos Transgênicos
5.
PLoS One ; 15(9): e0238134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936796

RESUMO

Malaria is a life-threatening disease, caused by Apicomplexan parasites of the Plasmodium genus. The Anopheles mosquito is necessary for the sexual replication of these parasites and for their transmission to vertebrate hosts, including humans. Imaging of the parasite within the insect vector has been attempted using multiple microscopy methods, most of which are hampered by the presence of the light scattering opaque cuticle of the mosquito. So far, most imaging of the Plasmodium mosquito stages depended on either sectioning or surgical dissection of important anatomical sites, such as the midgut and the salivary glands. Optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) enable imaging fields of view in the centimeter scale whilst providing micrometer resolution. In this paper, we compare different optical clearing protocols and present reconstructions of the whole body of Plasmodium-infected, optically cleared Anopheles stephensi mosquitoes and their midguts. The 3D-reconstructions from OPT imaging show detailed features of the mosquito anatomy and enable overall localization of parasites in midguts. Additionally, LSFM imaging of mosquito midguts shows detailed distribution of oocysts in extracted midguts. This work was submitted as a pre-print to bioRxiv, available at https://www.biorxiv.org/content/10.1101/682054v2.


Assuntos
Anopheles/fisiologia , Imageamento Tridimensional , Insetos Vetores/fisiologia , Microscopia de Fluorescência , Plasmodium/fisiologia , Tomografia Óptica , Animais , Anopheles/parasitologia
6.
Sci Immunol ; 5(46)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245888

RESUMO

It is well established that tissue macrophages and tissue-resident memory CD8+ T cells (TRM) play important roles for pathogen sensing and rapid protection of barrier tissues. In contrast, the mechanisms by which these two cell types cooperate for homeostatic organ surveillance after clearance of infections is poorly understood. Here, we used intravital imaging to show that TRM dynamically followed tissue macrophage topology in noninflamed murine submandibular salivary glands (SMGs). Depletion of tissue macrophages interfered with SMG TRM motility and caused a reduction of interepithelial T cell crossing. In the absence of macrophages, SMG TRM failed to cluster in response to local inflammatory chemokines. A detailed analysis of the SMG microarchitecture uncovered discontinuous attachment of tissue macrophages to neighboring epithelial cells, with occasional macrophage protrusions bridging adjacent acini and ducts. When dissecting the molecular mechanisms that drive homeostatic SMG TRM motility, we found that these cells exhibit a wide range of migration modes: In addition to chemokine- and adhesion receptor-driven motility, resting SMG TRM displayed a remarkable capacity for autonomous motility in the absence of chemoattractants and adhesive ligands. Autonomous SMG TRM motility was mediated by friction and insertion of protrusions into gaps offered by the surrounding microenvironment. In sum, SMG TRM display a unique continuum of migration modes, which are supported in vivo by tissue macrophages to allow homeostatic patrolling of the complex SMG architecture.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Homeostase/imunologia , Macrófagos/imunologia , Glândulas Salivares/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/imunologia , Inquéritos e Questionários
7.
Nature ; 574(7777): 200-205, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31582858

RESUMO

The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Vírus da Hepatite B/imunologia , Hepatócitos/imunologia , Hepatócitos/virologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Feminino , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/virologia , Humanos , Tolerância Imunológica , Interleucina-2/imunologia , Interleucina-2/uso terapêutico , Células de Kupffer/imunologia , Ativação Linfocitária , Masculino , Camundongos , Transcriptoma/genética
8.
J Immunol ; 203(9): 2377-2387, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548330

RESUMO

Flotillin-1 (Flot1) is an evolutionary conserved, ubiquitously expressed lipid raft-associated scaffolding protein. Migration of Flot1-deficient neutrophils is impaired because of a decrease in myosin II-mediated contractility. Flot1 also accumulates in the uropod of polarized T cells, suggesting an analogous role in T cell migration. In this study, we analyzed morphology and migration parameters of murine wild-type and Flot1-/- CD8+ T cells using in vitro assays and intravital two-photon microscopy of lymphoid and nonlymphoid tissues. Flot1-/- CD8+ T cells displayed significant alterations in cell shape and motility parameters in vivo but showed comparable homing to lymphoid organs and intact in vitro migration to chemokines. Furthermore, their clonal expansion and infiltration into nonlymphoid tissues during primary and secondary antiviral immune responses was comparable to wild-type CD8+ T cells. Taken together, Flot1 plays a detectable but unexpectedly minor role for CD8+ T cell behavior under physiological conditions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/fisiologia , Animais , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Epiderme/imunologia , Feminino , Memória Imunológica , Ativação Linfocitária , Masculino , Microdomínios da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Transl Med ; 11(493)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118293

RESUMO

Liver-directed gene therapy for the coagulation disorder hemophilia showed safe and effective results in clinical trials using adeno-associated viral vectors to replace a functional coagulation factor, although some unmet needs remain. Lentiviral vectors (LVs) may address some of these hurdles because of their potential for stable expression and the low prevalence of preexisting viral immunity in humans. However, systemic LV administration to hemophilic dogs was associated to mild acute toxicity and low efficacy at the administered doses. Here, exploiting intravital microscopy and LV surface engineering, we report a major role of the human phagocytosis inhibitor CD47, incorporated into LV cell membrane, in protecting LVs from uptake by professional phagocytes and innate immune sensing, thus favoring biodistribution to hepatocytes after systemic administration. By enforcing high CD47 surface content, we generated phagocytosis-shielded LVs which, upon intravenous administration to nonhuman primates, showed selective liver and spleen targeting and enhanced hepatocyte gene transfer compared to parental LV, reaching supraphysiological activity of human coagulation factor IX, the protein encoded by the transgene, without signs of toxicity or clonal expansion of transduced cells.


Assuntos
Terapia Genética , Vetores Genéticos/uso terapêutico , Lentivirus/genética , Fígado/patologia , Fagocitose , Animais , Antígeno CD47/metabolismo , Técnicas de Transferência de Genes , Hepatócitos/metabolismo , Humanos , Tolerância Imunológica , Imunidade Inata , Células de Kupffer/metabolismo , Macaca , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Fagócitos/metabolismo , Distribuição Tecidual
10.
Front Immunol ; 10: 3056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993059

RESUMO

In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), myelin-specific T cells are activated in the periphery and differentiate in T helper (Th) 1 and Th17 effector cells, which cross the blood-brain barrier (BBB) to reach the central nervous system (CNS), where they induce neuroinflammation. Here, we explored the role of intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in the activation of naïve myelin-specific T cells and in the subsequent migration of differentiated encephalitogenic Th1 and Th17 cells across the BBB in vitro and in vivo. While on antigen-presenting cells ICAM-1, but not ICAM-2 was required for the activation of naïve CD4+ T cells, endothelial ICAM-1 and ICAM-2 mediated both Th1 and Th17 cell migration across the BBB. ICAM-1/-2-deficient mice developed ameliorated typical and atypical EAE transferred by encephalitogenic Th1 and Th17 cells, respectively. Our study underscores important yet cell-specific contributions for ICAM-1 and ICAM-2 in EAE pathogenesis.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Células Th1/imunologia , Células Th17/imunologia , Migração Transendotelial e Transepitelial/imunologia , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/metabolismo , Moléculas de Adesão Celular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/metabolismo , Células Th17/metabolismo
11.
J Cereb Blood Flow Metab ; 39(10): 1995-2010, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29762071

RESUMO

Melanoma is the most aggressive skin cancer in humans. One severe complication is the formation of brain metastasis, which requires extravasation of melanoma cells across the tight blood-brain barrier (BBB). Previously, VLA-4 has been assigned a role for the adhesive interaction of melanoma cells with non-BBB endothelial cells. However, the role of melanoma VLA-4 for breaching the BBB remained unknown. In this study, we used a mouse in vitro BBB model and imaged the shear resistant arrest of melanoma cells on the BBB. Similar to effector T cells, inflammatory conditions of the BBB increased the arrest of melanoma cells followed by a unique post-arrest behavior lacking immediate crawling. However, over time, melanoma cells intercalated into the BBB and compromised its barrier properties. Most importantly, antibody ablation of VLA-4 abrogated melanoma shear resistant arrest on and intercalation into the BBB and protected the BBB from barrier breakdown. A tissue microarray established from human brain metastasis revealed that indeed a majority of 92% of all human melanoma brain metastases stained VLA-4 positive. We propose VLA-4 as a target for the inhibition of brain metastasis formation in the context of personalized medicine identifying metastasizing VLA-4 positive melanoma.


Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/secundário , Células Endoteliais/patologia , Integrina alfa4beta1/metabolismo , Melanoma/patologia , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Permeabilidade Capilar , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Integrina alfa4beta1/análise , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Migração Transendotelial e Transepitelial
12.
Front Immunol ; 9: 2001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254631

RESUMO

We previously identified Fam65b as an atypical inhibitor of the small G protein RhoA. Using a conditional model of a Fam65b-deficient mouse, we first show that Fam65b restricts spontaneous RhoA activation in resting T lymphocytes and regulates intranodal T cell migration in vivo. We next aimed at understanding, at the molecular level, how the brake that Fam65b exerts on RhoA can be relieved upon signaling to allow RhoA activation. Here, we show that chemokine stimulation phosphorylates Fam65b in T lymphocytes. This post-translational modification decreases the affinity of Fam65b for RhoA and favors Fam65b shuttling from the plasma membrane to the cytosol. Functionally, we show that the degree of Fam65b phosphorylation controls some cytoskeletal alterations downstream active RhoA such as actin polymerization, as well as T cell migration in vitro. Altogether, our results show that Fam65b expression and phosphorylation can finely tune the amount of active RhoA in order to favor optimal T lymphocyte motility.


Assuntos
Proteínas de Transporte/imunologia , Movimento Celular/imunologia , Proteínas de Membrana/imunologia , Proteínas/imunologia , Linfócitos T/imunologia , Proteínas rho de Ligação ao GTP/imunologia , Proteína rhoA de Ligação ao GTP/imunologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/imunologia , Animais , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação da Expressão Gênica/imunologia , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteínas/genética , Linfócitos T/citologia , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
13.
Stem Cell Res Ther ; 9(1): 195, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016973

RESUMO

BACKGROUND: Skeletal muscle has a remarkable regenerative capacity. However, extensive damage that exceeds the self-regenerative ability of the muscle can lead to irreversible fibrosis, scarring, and significant loss of function. Adipose-derived stem cells (ADSC) are a highly abundant source of progenitor cells that have been previously reported to support the regeneration of various muscle tissues, including striated muscles. The aim of this study was to evaluate the effect of ADSC transplantation on functional skeletal muscle regeneration in an acute injury model. METHODS: Mouse ADSC were isolated from subcutaneous fat tissue and transplanted with a collagen hydrogel into the crushed tibialis anterior muscle of mice. Recovering muscles were analyzed for gene and protein expression by real-time quantitative polymerase chain reaction and immunohistochemistry. The muscle contractility was assessed by myography in an organ bath system. RESULTS: Intramuscular transplantation of ADSC into crushed tibialis anterior muscle leads to an improved muscle regeneration with ADSC residing in the damaged area. We did not observe ADSC differentiation into new muscle fibers or endothelial cells. However, the ADSC-injected muscles had improved contractility in comparison with the collagen-injected controls 28 days post-transplantation. Additionally, an increase in fiber cross-sectional size and in the number of mature fibers with centralized nuclei was observed. CONCLUSIONS: ADSC transplantation into acute damaged skeletal muscle significantly improves functional muscle tissue regeneration without direct participation in muscle fiber formation. Cellular therapy with ADSC represents a novel approach to promote skeletal muscle regeneration.


Assuntos
Adipócitos/metabolismo , Células-Tronco/metabolismo , Transplante Autólogo/métodos , Diferenciação Celular , Humanos , Músculo Esquelético
14.
J Exp Med ; 215(7): 1869-1890, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29875261

RESUMO

T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b-/- CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b-/- CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b-/- CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue-resident T cell populations.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Miosinas/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Movimento Celular , Polaridade Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Epiderme/patologia , Epiderme/virologia , Matriz Extracelular/metabolismo , Imunidade , Ativação Linfocitária/imunologia , Tecido Linfoide/metabolismo , Camundongos Endogâmicos C57BL , Miosinas/deficiência , Receptores de Retorno de Linfócitos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
15.
J Hepatol ; 67(3): 543-548, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28483675

RESUMO

BACKGROUND & AIMS: Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8+ T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. METHODS: Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8+ T cell-derived IL-10 in liver immunopathology. RESULTS: Mouse HBV-specific effector CD8+ T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8+ T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8+ T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8+ T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8+ T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. CONCLUSION: Effector CD8+ T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8+ T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8+ T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-10/fisiologia , Fígado/imunologia , Doença Aguda , Animais , Apoptose , Vírus da Hepatite B/imunologia , Humanos , Interleucina-2/farmacologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pan troglodytes
16.
J Exp Med ; 213(12): 2811-2829, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27799622

RESUMO

During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity-primed T cells acquired cytotoxic activity earlier than high affinity-primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity-stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Peptídeos/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Proliferação de Células , Apresentação Cruzada/imunologia , Citotoxicidade Imunológica , Regulação da Expressão Gênica , Granzimas/metabolismo , Processamento de Imagem Assistida por Computador , Lectinas Tipo C/metabolismo , Linfonodos/imunologia , Vasos Linfáticos/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Viroses/imunologia
17.
J Immunol Methods ; 438: 35-41, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27589923

RESUMO

The development of multi-photon intravital microscopy, in particular two-photon microscopy (2PM), has been a breakthrough technique for deep-tissue imaging of dynamic cell behavior inside live organisms and has substantially advanced the field of immunology. However, intravital time-lapse imaging over prolonged time periods is complicated by slow tissue drifts caused by vital activity, leading to shifting fields of views and making the acquired image sequence partially or completely unanalyzable. To solve this issue, we have established a system that performs continuous drift offset correction in real time using fine pattern matching during 2PM acquisition. We incorporated an extensive use of graphical processing unit (GPU) for high-speed computing required for real time correction during data acquisition. This allowed us to perform prolonged acquisitions and increase the proportion of analyzable datasets to nearly 100% in lymphoid and non-lymphoid tissues. Considering the straightforward implementation of our newly developed system, we anticipate that it will be applicable for other users interested in improving the quality of live imaging data acquisition.


Assuntos
Sistemas Computacionais , Processamento de Imagem Assistida por Computador , Microscopia Intravital/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Pele/diagnóstico por imagem , Linfócitos T/citologia , Transferência Adotiva , Pontos de Referência Anatômicos , Animais , Movimento Celular , Camundongos , Camundongos Endogâmicos C57BL
18.
Front Immunol ; 6: 114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821451

RESUMO

Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.

19.
J Exp Med ; 211(13): 2507-17, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25488981

RESUMO

Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses.


Assuntos
Afinidade de Anticorpos/efeitos dos fármacos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Comunicação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Fatores Imunológicos/farmacologia , Tromboxano A2/farmacologia , Animais , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Galinhas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade/imunologia , Imunoglobulina G/biossíntese , Inflamação/patologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Ovalbumina/imunologia , Receptores de Tromboxano A2 e Prostaglandina H2/deficiência , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
20.
Immunity ; 40(4): 621-32, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24745336

RESUMO

Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs.


Assuntos
Proteína C-Reativa/metabolismo , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Neutrófilos/imunologia , Pielonefrite/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Componente Amiloide P Sérico/metabolismo , Infecções Urinárias/imunologia , Animais , Proteína C-Reativa/genética , Linhagem Celular , Criança , Análise Mutacional de DNA , Modelos Animais de Doenças , Infecções por Escherichia coli/complicações , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/microbiologia , Fagocitose , Polimorfismo Genético , Pielonefrite/etiologia , Receptores de Reconhecimento de Padrão/genética , Componente Amiloide P Sérico/genética , Suécia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Infecções Urinárias/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...